

DPI 880

Multi-function Calibrator Instruction Manual

Druck.com

A3

Druck DPI 880

Multi-function calibrator

User manual - K0405

EN

DE

ES

FR

IT

ΡΤ

CN

JP

RU

Table of Contents

Introduction	1			
Safety	2			
Marks and symbols on the instrument2	2			
To start	2			
Key to figure A1/A2 (Instrument)2	2			
Key to figure A3 (Display)	3			
Prepare the instrument	3			
Power on or off	3			
Set up the basic operation	3			
Select a task (Measure and/or supply)	3			
Set up the settings	4			
Operation	5			
Electrical connections	5			
Communications port connections	5			
Change the output values	5			
Measure/supply mA	5			
Measure/supply Volts or mV6	6			
Measure/supply Hz or pulses	7			
RTD/Ohms connections	7			
Measure/simulate an RTD or Ohms	7			
Thermocouple (TC) connections	8			
Measure/simulate a Thermocouple	8			
Transmitter calibration	8			
Switch test	8			
UPM Pressure measurements	9			
Error indications10)			
Maintenance	0			
Clean the unit	5			
Replace the batteries 10	5			
Calibration 11	1			
Before you start	• 1			
Procedures: mA input	י 1			
Procedures: mA niput	י 1			
Procedures: m////olts input 12	2			
Procedures: mV//volts output 12	2			
Procedures: Hz input/output	- 2			
Procedures: C.L input	2			
Procedures: RTD (Ohms) input	3			
Procedures: RTD (Ohms) output	3			
Procedures: TC (mV) input/output 13				
Procedures: IDOS UMM	3			
Specification 1/	1			
General 1/	•			
Electrical (A1 - Item 10)	1 1			
Electrical connectors (A2)	4			
Temperature ranges (RTD)	1 1			
Resistance ranges (Ohms/RTD)	7 5			
Frequency 1	5			
Temperature ranges (TC)	3			
mV (TC) range	5			

Introduction

The DPI 880 Multi-function Calibrator is part of the Druck DPI 8xx series of hand held instruments.

This series of instruments uses Intelligent Digital Output Sensor (IDOS) technology to give instant plug and play functionality with a range of Universal Measurement Modules (UMM). Example: the Universal Pressure Module (UPM). The DPI 880 includes these functions:

Function
a Measure mA, Volts/mV, Hz/pulse count
* Supply mA, Volts/mV, Hz/pulse count
 * Measure/simulate: - a Resistance Temperature Detector (RTD): Ω or °C/°F - a thermocouple (TC): mV or °C/°F - a resistor (Ω)
Cold Junction (CJ) compensation: Automatic/Manual
Step/Ramp functions: Automatic/Manual
Communications port: IDOS or RS232
Language selection (Refer to Table 1)
** Measure pressure/Leak test: External IDOS UPM
** Snapshot: Up to 1000 displays with a date/time stamp
250Ω series resistor. Use this instrument together with a HART [®] communicator to set up and calibrate HART [®] devices.
Switch test
Other functions: Hold, Backlight

a Refer to "Specification".

** Optional item

Safety

Before you use the instrument, make sure that you read and understand all the related data. This includes: all local safety procedures, the instructions for the UMM (if applicable), and this publication.

WARNING

- It is dangerous to ignore the specified limits for the instrument or to use the instrument when it is not in its normal condition. Use the applicable protection and obey all safety precautions.
- Do not use the instrument in locations with explosive gas, vapor or dust. There is a risk of an explosion.
- To prevent electrical shocks or damage to the instrument, do not connect more than 30V between the terminals, or between the terminals and the ground (earth).
- UPM only. To prevent a dangerous release of pressure, isolate and bleed the system before you disconnect a pressure connection.

Before you start an operation or procedure in this publication, make sure that you have the necessary skills (if necessary, with qualifications from an approved training establishment). Follow good engineering practice at all times.

Marks and symbols on the instrument

CE	Complies with European Union directives		Warning - refer to the manual	
•	Read the manual	÷	Battery	
<u> </u>	Ground (Earth)	0	ON/OFF	
Do not dispose of this product as household waste. Refer to "Maintenance".				
More marks and symbols are specified in "To start".				

To start

Key to figure A1/A2 (Instrument)

Iten	n	Descriptio	n	
1.	О	On or off b	utton.	
2.		Left-hand soft-key. Selects the function above it on the display (Item 24). Example: Edit		
3.	ESC	Moves back one menu level. Leaves a menu option. Cancels the changes to a value.		
4.	▲ ▼	Increases or decreases a value. Highlights a different item.		
5.	HOLD	Holds the data on the display. To continue, press the HOLD button again.		
6.	MENU OK	Shows the task selection menu (Item 25). Selects or accepts an item or value. Selects [✓] or cancels [] a selection.		
7.		Right-hand soft-key. Selects the function above it on the display (Item 24). Example: Settings		
8.		Display. Refer to A3		
9.	SENSOR/ PC	Communications port. Use to connect a Universal Measurement Module (UMM) or a RS232 cable.		
10.		Connectors Refer to "O	s to measure or supply the specified values. peration".	
		СОМ	Common connector	
		3W, 4W	3-wire, 4-wire RTD input	
11.		Connection point for some of the optional accessories. Refer to the datasheet.		
12. Battery compartment. Refer to B1.		npartment. Refer to B1.		
13. 14. 15		(<i>Dual Function</i>) Connectors to measure or supply the specified values. Refer to "Operation".		
		Vin, ∎∕°⊪	Volts input or switch	
		24Vo	24V loop power supply	

Key to figure A3 (Display)

Iten	n	Description		
1.	ţ	Task indication for the switch test.		
		🕳 = switch closed 🚽 🚽 = switch open		
	Ŧ	UPM only. Task indication for the leak test.		
	250 •□•	There is a 250 $\!\Omega$ series resistor in the mA circuit.		
		Refer to: Table 2/3		
2.	24∀	The loop power supply is on. Refer to: Table 2/3		
3.	Н	The data on the display is on hold. To continue, press the HOLD button again.		
4.		Shows the battery level: 0 to 100%.		
5.	œ	Identifies the type of data.		
		G ⊢ = Input G+ = Output		
		③ = IDOS input		
		Refer to: Table 2/3		
21.	to 22.	The settings applied to the input or output:		
6.	к	The thermocouple type (K, J, T) - (Table 4/5).		
	CJ=	The cold junction temperature (Table 1)		
	Pt	The RTD type (Pt50,) - (Table 4/5).		
	n⊡n	RTD input connections: 2, 3, or 4 (Figure 7)		
	5.0V	V The input trigger level (Table 4) or the output amplitude (Table 5).		
7.	\Leftrightarrow	\Leftrightarrow ,, \checkmark = Output operation (Table 5)		
8.	13.400 55mA	The measured values applicable to the task selections in item 25, area $①$ and $②$ + the measurement range and units.		
9.	Sk1/2	A soft-key function. To select an available function, press the soft-key below it. Example:		
		= Move left = Move right		
10.		The task selection menu. One task selection is permitted in each area ($\textcircled{1}$ and $\textcircled{2}$).		
	OK VE	= cursor position (flashes on/off)		
	тс	= a button or task selection is set in area ${\mathbb O}$ or ${\mathbb O}.$		
	\Box	Sets the <i>Dual Function</i> , area ② selections to off. This saves the battery power.		
		Refer to: Table 2/3		
	?	<i>Help</i> : Shows a connection diagram for the task selections you have set.		
	P	Set Up: Shows the Set Up menu to set up the basic operation. Refer to Table 1.		
	ок	OK: Accepts the selections on the menu. Note: MENU/OK also does this.		
	T	<i>Utilities</i> : <i>Leak Test</i> . Use this function with a UPM. Refer to Figure 13.		
	Ø	<i>Snapshot</i> : Optional item - To use this facility, install the data logging upgrade kit. Refer to the user manual - K0397: DPI 800 series data logging upgrade kit.		

Prepare the instrument

Before you use the instrument for the first time:

- Make sure that there is no damage to the instrument, and that there are no missing items.
- Remove the plastic film that protects the display. Use the tag (▶) in the top right-hand corner.

• Install the batteries (refer to B1). Then re-attach the cover.

Power on or off

To set the power on or off, press ${\rm O}$ (A1 - item 1). The instrument does a self test and then shows the applicable data.

When the power is off, the last set of configuration options stays in memory. Refer to "Maintenance".

Set up the basic operation

Use the *Set Up* menu to set up the basic operation of the instrument.

If there is additional data for a menu option, select Settings (\blacksquare) to see the values that are set up. If necessary, adjust the values.

Table 1	: Menu	options -	Set Up
---------	--------	-----------	--------

Options	Description
Scale	To select the applicable international temperature scale: IPTS 68 or ITS 90.
250 	To add a 250 Ω series resistor into the mA circuit. You can then use this instrument together with a HART [®] communicator to set up and calibrate HART [®] devices.
6	To select and set up the backlight facility + timer. Additional data: Select Settings (■ ■)
0/1	To select and set up the power off facility + timer. Additional data: Select Settings (\blacksquare)
	To show the battery level (%).
۲	To set the display contrast (%). ▲ Increases %, ▼ decreases %
Ö	To set the time + date. The calibration facility uses the date to give service and calibration messages.
ې ې	To set the language option.
ß	To calibrate the instrument. <i>Additional data:</i> Refer to "Calibration".
1	To select and show the applicable status data. (Software Build, Calibration Due date, Serial Number, IDOS Information).

Select a task (Measure and/or supply)

When the instrument is set up (Table 1), use the task selection menu to select the applicable task.

If you attach a Universal Measurement Module (UMM) to the communications port (A1 - item 9), the task selection menu shows the applicable IDOS options.

Make the necessary selections from each area (① and ②). One task is permitted in each area.

Note: Use the Dual Function area ($^{(2)}$) to do two operations at the same time. If the area $^{(2)}$ selection is not necessary, set this area to off (\blacksquare). This saves the battery power.

 Table 2: Menu options - Task selections (Area ①)

Options	Description
(If applicable)	
O⊢	Input measurement tasks:
mA	Measure ±55 mA
V	Measure ±30V
mV	Measure ±120mV
Hz	Measure the frequency (Units: Table 4)
RTD	Measure RTD temperature
Ω	Measure RTD resistance or Ω
TC	Measure thermocouple temperature OR mV
®+	Only when an IDOS UMM is attached. An IDOS measurement task.
•	Output tasks:
mA	Supply 0 to 24 mA
V	Supply 0 to 12V
mV	Supply 0 to 120mV
Hz	Supply an output frequency (Units: Table 4)
RTD	Simulate RTD temperature
Ω	Simulate RTD resistance or Ω
TC	Simulate thermocouple temperature OR mV

Table 3: Menu options - Task selections(Dual Function, area 2)

Options (If applicable)		Description	
\Box	White button = A <i>Dual Function</i> is set. Black button = <i>Dual Function</i> , area ② is set to or		
		Input measurement tasks:	
\cup	mA	Measure ±55 mA	
	V	Measure ±30V	
	mA/24V	Measure ±55 mA (24V loop power is on)	
	\$	A switch test	
•		Only when an IDOS UMM is attached. An IDOS measurement task.	

Set up the settings

When the task is set up (Table 2/3), use the *Settings* menu to adjust the input and/or output operation.

If there is additional data for a menu option, select Settings (\blacksquare \blacksquare) to see the values that are set up. If necessary, adjust the values.

Options	Description		
(If applicable)			
Units	<i>Pressure Units</i> (UPM only). If you select an IDOS task (Table 2/3). Select one of the fixed units of measurement (psi, mbar).		
	<i>Temperature Units</i> (RTD or TC only). To select the temperature units (°C or °F).		
	Frequency Units (Hz only). To select one of these units:		
	Hz: Range < 1000Hz kHz: Range 0 to 50kHz		
	counts/minute (cpm) counts/hour (cph)		
G -	(TC only). Change the measurement operation: <i>Temperature</i> to <i>mV</i> OR <i>mV</i> to <i>Temperature</i>		
CJ	(TC only). To select the type of cold junction (CJ) compensation.		
	Automatic: The instrument monitors the CJ temperature and applies the necessary CJ compensation.		
	<i>Manual:</i> Measure the CJ temperature and set the applicable value. The instrument uses this value to apply the necessary CJ compensation.		
type	Select RTD Type (RTD only). To select an applicable RTD type (Pt50, Pt100)		
	Select TC Type (TC only). To select an applicable thermocouple type (K, J, T)		
Trigger level	(Hz only). To set the amplitude at which the instrument senses a frequency signal. Default = 5V.		
	Auto Detect $[\checkmark]/[$]: Set this option to make the instrument calculate the value from the available signal.		
0.0	(UPM only). Gage sensors or sensors with differential operation. A zero correction that makes the instrument read zero at local pressure.		
Ö	(Leak Test only). To set an applicable period for the leak test (Hours:Minutes:Seconds).		

Table 5: (Part of table) Menu options - Settings (Output)

Options (If applicable)	Description		
Units	Pressure/Temperature: Refer to Table 4.		
	Frequency Units (Hz only). To select one of these units:		
	Hz: Range < 1000Hz	kHz: Range 0 to 50kHz	
	pulses/minute (ppm)	pulses/hour (pph)	
	(TC only). Change the output operation: <i>Temperature</i> to <i>mV</i> OR <i>mV</i> to <i>Temperature</i>		
CJ	(TC only). Refer to Table 4.		
type	Refer to Table 4.		
Amplitude	(Hz only). To set the amplitude of the output signal. Amplitude = 5V (Default).		
⇔	To select and set up a value for the "Nudge" output. Example: 1.000 mA increments.		
	Additional data: Select Settings (■ ■)		

Table 5: (Part of table) Menu options - Settings (Output)

Table 6: Additional data for Settings (Output):

Item	Value
Span Check	
Low (0%)	Set the 0% value.
High (100%)	Set the 100% value.
Dwell (d)	Set the period (Hours:Minutes:Seconds) between each change in value.
% Step	Low (0%), High (100%), Dwell (d): As above.
Step Size (s) %	Set the change in value for each step as a percentage of the full-scale range (High - Low).
Defined Step	Low (0%), High (100%), Dwell (d): As above.
Step Size (s)	Set the change in value for each step. Example: 1.000 mA steps.
Ramp	Low (0%), High (100%), Dwell (d): As above.
Travel (t)	Set the period (Hours:Minutes:Seconds) to go from the Low (0%) value to the High (100%) value.
Auto Repeat	If applicable, select this item to repeat a cycle continuously.

Operation

This section gives examples of how to connect and use the instrument. Before you start:

- Read and understand the "Safety" section.
- Do not use a damaged instrument.

Electrical connections

To prevent instrument errors, make sure that the electrical connections (A1-item 10 and/or A2) are correct.

The Help button (A3 - Item 25) shows a connection diagram for the task selections you have set.

Communications port connections

Use the communications port (A1 - item 9) to attach an IDOS Universal Measurement Module (UMM).

When you attach the cable from a UMM (Figure 13/14), the instrument automatically changes the menus to give you all the applicable options (Table 2/3).

Change the output values

When the output operation is set up (Table 5), use one of these procedures to change the output values:

Table 7: Procedures to change the output

Output	Procedure
\Leftrightarrow	Select <i>Edit</i> (\blacksquare \blacksquare) and/or use the \blacktriangle \lor buttons. See the example below.
100 <u>6</u> , _	Select Start/Stop (\blacksquare \blacksquare) or use the \blacktriangle \forall buttons to make the step changes manually.
<u> </u>	Select <i>Start/Stop</i> (■ ■).

Example procedure ("Nudge" output):

Measure/supply mA

To measure/supply a current:

- 1. Connect the instrument (Figure 1, 2 or 3) and, if necessary, adjust the Set Up (Table 1).
- 2. Select the task from the task selection menu (Table 2/3).

(Table 5)

Note: Use the Dual Function area (2) to do two operations at the same time. If the area 2 selection is not necessary, set this area to off (\blacksquare) . This saves the battery power.

3. If necessary, adjust the Settings (Table 4/5) and/or the

output values to the system (Table 7).

Figure 1: Example configuration - To measure/supply mA with external loop power (Area ①)

Figure 2: Example configuration - To supply mA with internal loop power (Area ①)

Figure 3: Example configuration - To measure mA (Dual Function, area ⁽²⁾)

Measure/supply Volts or mV

To measure/supply Volts or mV:

- 1. Connect the instrument (Figure 4/5) and, if necessary, adjust the Set Up (Table 1).
- 2. Select the task from the task selection menu (Table 2/3).

Note: Use the Dual Function area ($^{(2)}$) to do two operations at the same time. If the area $^{(2)}$ selection is not necessary, set this area to off (\blacksquare). This saves the battery power.

3. If necessary, adjust the *Settings* (Table 4/5) and/or the output values to the system (Table 7).

Figure 4: Example configuration - To measure/supply Volts or mV (Area ①)

6 - [EN] English

Figure 5: Example configuration - To measure Volts (Dual Function, area ⁽²⁾)

Measure/supply Hz or pulses

To measure/supply Hz or pulses:

- 1. Connect the instrument (Figure 6) and, if necessary, adjust the Set Up (Table 1).
- 2. Select the task from the task selection menu (Table 2):
- 3. If necessary, adjust the *Settings* (Table 4/5) and/or the output values to the system (Table 7).

Figure 6: Example configuration - To measure/supply Hz or Pulses

For an input, the display shows the condition of the frequency gate:

- _ = Gate open (measurement starts)
- ¬∠ = Gate closed (measurement is waiting for the next rising edge of the cycle)
- ¥॒∡ = Fast cycle

RTD/Ohms connections

In the examples that follow 2W, 3W, and 4W identify the 2, 3, and 4-wire connections for a RTD or resistance.

Measure/simulate an RTD or Ohms

To measure/simulate RTD values or Ohms:

- 1. Connect the instrument (Figure 7/8) and, if necessary, adjust the *Set Up* (Table 1).
- 2. Select the task from the task selection menu (Table 2):
- 3. If necessary, adjust the *Settings* (Table 4/5) and/or the output values to the system (Table 7).

Figure 7: Example configuration - To measure the temperature or resistance

For an input, the display shows the number of RTD or resistance connections.

If this symbol does not agree with the number of connections:

- · Make sure that the connections are correct.
- Make sure that the wires and the sensor are serviceable.

Figure 8: Example configuration - To simulate the temperature or resistance

Thermocouple (TC) connections

Attach the TC wires to the applicable TC mini-connector (Figure 9). The wider blade is the negative. Then attach the connector to the instrument.

Measure/simulate a Thermocouple

To measure/simulate the TC values:

- 1. Connect the instrument (Figure 9) and, if necessary, adjust the *Set Up* (Table 1).
- 2. Select the task from the task selection menu (Table 2).
- 3. Select Settings (■ ■) to change the operation from *Temperature* to *mV* or *mV* to *Temperature*.
- 4. If necessary, adjust the *Settings* (Table 4/5) and/or the output values to the system (Table 7).

Figure 9: Example configuration - To measure/simulate the temperature (°C/°F) or mV values of a TC

Transmitter calibration

To calibrate a transmitter:

1. Connect the instrument (Figure 10/11) and, if necessary, adjust the *Set Up* (Table 1).

- 2. Select the applicable calibration task from the task selection menu (Table 2/3) and, if necessary, adjust the *Settings* (Table 4/5).
- 3. Supply the output values to the system (Table 7).

Figure 10: Example configuration - Transmitter calibration with external loop power

Figure 11: Example configuration - Transmitter calibration with internal loop power

Switch test

To do tests on a switch:

- 1. Connect the instrument (Figure 12) and, if necessary, adjust the Set Up (Table 1).
- Select the applicable switch test from the task selection menu (Table 2/3) and, if necessary, adjust the *Settings* (Table 5). The display shows the switch condition (open or closed) in the top right-hand corner.
- 3. Supply the output values to the system (Table 7).
- Example "Nudge" output.

- a. Use *Edit* (■ ■) to set a value less than the switch value.
- b. Use the ▲ ▼ buttons to change the value in small increments.
- Example "Ramp" output.
 - a. Set "High" and "Low" values that are applicable to the switch value (Table 6). Then, to get an accurate switch value, set a long <u>"</u>Travel" period.
 - b. Use Start/Stop (■ ■) to start and stop the "Ramp" cycle.
- If necessary, supply the output values in the opposite direction until the switch changes condition again.
 The display shows the applicable values to open and close the switch.
- 5. To do the test again, press **ESC** to reset the values.

Figure 12: Example configuration - Switch test

UPM Pressure measurements

Read all the instructions supplied with the UPM and then use the specified procedures to connect it (Figure 13/14).

Figure 13: Example configuration - Pressure measurement with a UPM

When the connections are complete, make the necessary IDOS selections (Table 2/3).

Each time you use a different UPM, the DPI 880 records its measurement units (capacity: the last 10 different UPM). When you re-attach one of the last 10 UPM, the DPI 880 automatically uses the applicable units (psi, mbar ...).

UPM - Measure the pressure/leak test

To measure the pressure with or without a leak test (Figure 13):

1. Select the applicable pressure task from the task selection menu (Table 2/3) and, if necessary, adjust the *Set Up* (Table 1), and the *Settings* (Table 4/5).

Utilities function: Use this function to include the *Leak Test* option.

- 2. If applicable, set the period for the leak test (Table 4).
- 3. If necessary, do a zero correction (Table 4).
- To start the leak test, select Start (■ ■). When the test is finished, the instrument calculates the leak rate in the applicable units/minute.

To measure pressure with another operation (Figure 14), use the same procedure.

Figure 14: Example configuration - To measure pressure and temperature

Error indications

- If the display shows <<<< or >>>> :
- Make sure that the range is correct.
- Make sure that all the related equipment and connections are serviceable.

Maintenance

This section gives procedures to maintain the unit in a good condition. Return the instrument to the manufacturer or an approved service agent for all repairs.

Do not dispose of this product as household waste. Use an approved organisation that collects and/or recycles waste electrical and electronic equipment.

For more information, contact one of these:

- our customer service department: (Contact us at Druck.com)
- your local government office.

Clean the unit

Clean the case with a moist, lint-free cloth and a weak detergent. Do not use solvents or abrasive materials.

Replace the batteries B1

To replace the batteries, refer to B1. Then re-attach the cover. Make sure that the time and date are correct. The calibration facility uses the date to give service and calibration messages.

All the other configuration options stay in memory.

Calibration

Note: Druck can provide a calibration service that is traceable to international standards.

We recommend that you return the instrument to the manufacturer or an approved service agent for calibration. If you use an alternative calibration facility, make sure that it uses these standards.

Before you start

To do an accurate calibration, you must have:

- the calibration equipment specified in Table 8.
- a stable temperature environment: 70 ± 2°F (21 ± 1°C)

Table 8: Calibration equipment

Function	Calibration equipment		
	(ppm = parts per million)		
mA OR	mA calibrator.		
mA (Dual)	Accuracy - mA input/output: Table 10/11		
	Accuracy - mA (Dual Function): Table 10		
mV OR	mV calibrator.		
TC (mV)	Accuracy - mV input/output: Table 12/14		
	Accuracy - TC (mV): Table 20		
Volts OR	Volts calibrator.		
Volts (Dual)	Accuracy - Volts input/output: Table 13/ 15.		
	Accuracy - Volts (Dual Function): Table 13		
Hz	1) Frequency meter		
	Total error: 7 ppm or better		
	Resolution: 8 digits (minimum)		
15.00			
IDOS	UMM only. Refer to the user manual for the IDOS		
CJ	- Standard RTD probe		
	Accuracy: 50 mK for 23 to 82.4 F (-5 to 28 C)		
	- Digital thermometer		
	Accuracy: 10 mK		
	- Standard 002 resistor		
RIDOnms	- aStandard resistor (Ω): 100, 200, 300		
	Tolerance: 50 ppm + 0.6 ppm/°C + 5 ppm/year		
	- *Standard resistor (Ω): 400, 1k, 2k, 4k		
	Tolerance: 10 ppm + 0.6 ppm/°C + 5 ppm/year		
	An ohmmeter or an RTD measurement system with		
RID Ohms	the specified excitation currents (Table 19).		

a Or an equivalent resistance simulator

Before you start the calibration, make sure that the time and date on the instrument are correct (Table 1).

Selection sequence:

➤ Task selection menu ➤ Set Up (Table 1) ➤ Calibration ➤

Options	Description	
≻ 0+ (+	To calibrate the specified input/output: = mA, mV, Volts, Hz, RTD (Ohms), TC (mV)	
IDOS	UMM only. To calibrate the specified IDOS UMM. Refer to the user manual for the IDOS UMM.	
CJ	To calibrate the cold junction channel.	

mA (Dual)	To calibrate the mA (Dual Function) input.
Volts (Dual)	To calibrate the Volts (Dual Function) input.
Þ	<i>Calibration Due:</i> To set the date of the next calibration for the instrument. After the specified calibration date, there is a warning message. There is a selection box to stop the warning.
Ð	To change the calibration PIN (Personal Identification Number).

When you select a channel/function, the display shows the applicable instructions to complete the calibration. When the calibration is complete, select *Calibration Due* and set the new calibration date for the instrument.

Procedures: mA input

- 1. Connect the instrument to the calibration equipment (Figure 3).
- 2. Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a three-point calibration (-FS, Zero and +FS)^{*}. The display shows the applicable instructions to complete the calibration.
- To make sure that the calibration is correct, select the applicable mA input task (Table 2) and apply these values:
- mA: -55, -40, -24, -18, -12, -6, 0 (open circuit) Then mA: 0, 6, 12, 18, 24, 40, 55.
- 5. Make sure that the error is in the specified limits (Table 10).

Table 10: m/	input ei	rror limits
---------------------	----------	-------------

Applied mA	Calibrator error (mA)	Permitted DPI 880 error (mA)
±55	0.002 2	0.005
±40	0.001 8	0.004
±24	0.001 4	0.003
±18	0.000 4	0.003
±12	0.000 3	0.002
±6	0.000 2	0.002
0 (open circuit)	-	0.001

Procedures: mA output

- 1. Connect the instrument to the calibration equipment (Figure 1).
- Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a two-point calibration (Zero and +FS). The display shows the applicable instructions to complete the calibration.
- 4. To make sure that the calibration is correct, select the applicable mA output task (Table 2) and set these output values:
- mA: 0.1, 4, 12, 20, 24
- 5. Make sure that the error is in the specified limits (Table 11).

Output mA	Calibrator error (mA)	Permitted DPI 880 error (mA)
0.1	0.000 006	0.001
4	0.000 20	0.001
12	0.001 4	0.001
20	0.002	0.002
24	0.002 3	0.002

Table 11: mA output error limits

FS = Full scale

Procedures: mV/Volts input

- 1. Connect the instrument to the calibration equipment (Figure 4).
- 2. Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a three-point calibration (-FS, Zero and +FS). The display shows the applicable instructions to complete the calibration.
- 4. To make sure that the calibration is correct, select the applicable mV or Volts input task (Table 2).
- 5. Then apply the input values that are applicable to the calibration:
- mV: -120, -60, -30, 0 (short circuit) Then mV: 0, 30, 60, 120

OR

- Volts (V): -30, -15, -5, 0 (short circuit) Then volts (V): 0, 5, 15, 30
- 6. Make sure that the error is in the specified limits (Table 12 or Table 13).

Table 12: mV input error limits

Applied mV	Calibrator error (mV)	Permitted DPI 880 error (mV)
±120	0.001 3	0.03
±60	0.000 8	0.02
±30	0.000 6	0.02
0 (Short circuit)	-	0.01

Table 13: Volts (V) input error limits

Applied V	Calibrator error (V)	Permitted DPI 880 error (V)
±30	0.000 58	0.004
±15	0.000 11	0.002
±5	0.000 06	0.001
0 (Short circuit)	-	0.001

Procedures: mV/Volts output

- 1. Connect the instrument to the calibration equipment (Figure 4).
- 2. Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a two-point calibration (Zero and +FS). The display shows the applicable instructions to complete the calibration.
- 4. To make sure that the calibration is correct, select the applicable mV or Volts output task (Table 2).
- 5. Then set the output values that are applicable to the calibration:
- mV: 0, 30, 60, 90, 120

OR

- Volts (V): 0, 3, 6, 9, 12
- 6. Make sure that the error is in the specified limits (Table 14 or Table 15).

Table 14: mV output error limits

Output mV	Calibrator error (mV)	Permitted DPI 880 error (mV)
0	0.000 05	0.01
30	0.000 425	0.02
60	0.000 8	0.03
90	0.001 175	0.03
120	0.000 98	0.04

Table 15: Volts (V) output error limits

Output V	Calibrator error (V)	Permitted DPI 880 error (V)
0	0.000 000 05	0.001
3	0.000 017 5	0.002
6	0.000 03	0.002
9	0.000 05	0.002
12	0.000 134	0.002

Procedures: Hz input/output

- 1. Connect the instrument to the calibration equipment (Figure 6).
- Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Set up the equipment with these conditions:

Frequency meter:	Gate time = one second
Signal generator:	Output = 10V, unipolar, square wave
	Frequency = 990 Hz
DPI 880:	Input units = Hz (Table 4)
	Input trigger level = 5V (Table 4)

- 4. Use the calibration menu (Table 9) to do the calibration. The display shows the applicable instructions to complete the calibration.
- 5. To make sure that the calibration is correct, set up the equipment to do one of these calibration checks:
- Hz input calibration check (Figure 6):

Frequency meter:	Gate time = one second
Signal generator:	Output = 10V, unipolar, square wave
DPI 880:	Input trigger level = 5V (Table 4)
	Units (Table 4): Hz or kHz as
	specified in Table 16/17.

• Hz output calibration check (Figure 6):

Frequency meter:	Gate time = one second
DPI 880:	Units (Table 5): Hz or kHz as specified in Table 16/17.

6. Measure or supply the specified values (Table 16/17): Hz then kHz. Make sure that the error is in the specified limits.

Table 16: Hz error limits (Measure/Supply)

Measure/ Supply	Calibrator error (Hz)	Permitted DPI 880 err	ror (Hz)
Hz		O+	↔
25	0.000 175	0.002	0.001 4
100	0.000 7	0.002	0.002 1
250	0.001 75	0.004	0.003 5
500	0.003 5	0.006	0.005 8
990	0.006 93	0.011	0.010 4

Table 17: kHz error limits (Measure/Supply)

Measure/ Supply	Calibrator error (kHz)	Permitted DPI 880 erro	or (kHz)
kHz		G ⊢	↔
2.500 0	0.017 5	0.000 2	0.000 042
10.000 0	0.07	0.000 2	0.000 112
20.000 0	0.14	0.000 3	0.000 205
30.000 0	0.21	0.000 4	0.000 298
50.000 0	0.35	0.000 6	0.000 483

Procedures: CJ input

- 1. Connect the instrument to the calibration equipment (Figure 9).
- 2. Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a one-point

calibration (+FS). The display shows the applicable instructions to complete the calibration.

- To make sure that the calibration is correct, select the applicable T1 input task (Table 2).
- Make sure that the DPI 880 gives a probe temperature that agrees with the temperature on the digital thermometer ±0.2°F (0.1°C).

Procedures: RTD (Ohms) input

- Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 2. Use the calibration menu (Table 9) to do a two-point calibration for each range.
- Range: 0-399.9Ω
 - a. Nominal zero ohms: Make a 4 wire connection to the 0Ω resistor (Figure 7).
 - b. Nominal positive full-scale ohms: Make a 4 wire connection to the 400Ω resistor (Figure 7).
- Range: 400Ω-4kΩ
 - a. Nominal zero ohms: Make a 4 wire connection to the 400Ω resistor (Figure 7).
 - b. Nominal positive full-scale ohms: Make a 4 wire connection to the 4kΩ resistor (Figure 7).
 The display shows the applicable instructions to calibrate each range.
- 3. To make sure that the calibration is correct, select the applicable ohms input task (Table 2).
- 4. Make a 4 wire connection to the applicable standard resistor (Table 18) and measure the value (Figure 7).
- 5. Make sure that the error is in the specified limits (Table 18).

Table 18: RTD (Ohms) input error limits

Standard Resistora (Ω)	Resistor error (Ω)	Permitted DPI 880 error (Ω)
0 (Short circuit)	-	0.05
100	0.008	0.05
200	0.013	0.05
300	0.018	0.05
400	0.007	0.05
1k	0.042	0.25
2k	0.052	0.25
4k	0.072	0.50

a Or an equivalent resistance simulator

Procedures: RTD (Ohms) output

- 1. Connect the instrument to the calibration equipment (Figure 8).
- Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do a two-point calibration for each range.
- Range: 0-399.9Ω
- Range: 400Ω-1999.9Ω
- Range: 2kΩ-4kΩ The display shows the applicable instructions to calibrate each range.
- 4. To make sure that the calibration is correct, select the applicable ohms output task (Table 2).
- 5. Supply the specified values (Table 19). Make sure that the error is in the specified limits.

Table 19: RTD (Ohms) output error limits

Ohms (Ω)	Excitation (mA)a	Calibrator error (Ω)	Permitted DPI 880 error (Ω)
0	0.50 to 3.0	0.003	0.05

100	0.50 to 3.0	0.004	0.06
200	0.50 to 3.0	0.005	0.06
300	0.50 to 3.0	0.007	0.07
400	0.50 to 3.0	0.008	0.07
1000	0.05 to 0.8	0.015	0.30
2000	0.05 to 0.4	0.026	0.40
4000	0.05 to 0.3	0.049	0.80

a Refer to "Specification"

Procedures: TC (mV) input/output

- 1. Connect the instrument to the calibration equipment:
- TC (mV) input = Figure 9b
- TC (mV) output = Figure 9d
- 2. Let the equipment get to a stable temperature (minimum: 5 minutes since the last power on).
- 3. Use the calibration menu (Table 9) to do the calibration:
- TC (mV) input = three-point calibration (-FS, Zero and +FS).
- TC (mV) output = two-point calibration (Zero and +FS). The display shows the applicable instructions to complete the calibration.
- 4. To make sure that the calibration is correct, select the applicable TC (mV) input or output task (Table 2) and apply the necessary values:
- TC (mV) input: -10, 0 (short circuit) Then TC (mV): 25, 50, 75
- TC (mV) output: -10, 0, 25, 50, 75
- 5. Make sure that the error is in the specified limits (Table 20).

Table 20: TC (mV) input/output error limits

Input or output	Calibrator error TC (mV)		Permitted DPI 880 error TC (mV)	
TC (mV)	G⊢ mV	G + mV	G⊢mV	G → mV
-10	0.000 5	0.000 18	0.008	0.008
0	-	0.000 05	0.006	0.006
25	0.000 6	0.000 36	0.010	0.010
50	0.000 8	0.000 68	0.014	0.014
75	0.001 0	0.000 99	0.018	0.018

Procedures: IDOS UMM

Refer to the user manual for the IDOS UMM. When the calibration is complete, the instrument automatically sets a new calibration date in the UMM.

Specification

All accuracy statements include one year stability.

Languages	English [Default]
Operating	14 to 122°F (-10 to 50°C)
temperature	
Storage	-4 to 158°F (-20 to 70°C)
temperature	
Humidity	0 to 90% without condensation
	(Def Stan 66-31, 8.6 cat III)
Shock/Vibration	BS EN 61010:2001; Def Stan 66-31, 8.4 cat III
EMC	BS EN 61326-1:1998 + A2:2001
Safety	Electrical - BS EN 61010:2001; CE Marked
Size (L: W: H)	7.1 x 3.3 x 2.0 in
	(180 x 85 x 50 mm)
Weight	15 oz (425 g)
Power supply	3 x AA alkaline batteries
Duration	Measure functions (area $\textcircled{1}$): \approx 60 hours
	Dual Function, mA measure (area 2):
	\approx 7 hours (24 V Source at 12 mA)

Electrical (A1 - Item 10)

Range (Measure):	0 to ±55 mA 0 to ±120 mV 0 to 4000Ωa 0 to ±30 V
Accuracy: Measure mA	0.02% of reading + 3 counts
Accuracy: Measure mV	0.02% of reading + 2 counts
Accuracy: Measure V	0.03% of reading + 2 counts
Range (Supply):	0 to 24 mA 0 to 120 mV 0 to 4000Ω* 0 to 12 V
Accuracy (Supply): mA, mV, V	0.02% of reading + 2 counts
Temperature coefficient (Measure or supply)	
14 to 50°F, 86 to 122°F (-10 to 10°C, 30 to 50°C)	0.0017% FS / °F (0.003% FS / °C)
Connectors (A1 - Item 10)	Four 0.16 in (4 mm) sockets
	One TC mini-connector socket

a Refer to "Resistance ranges (Ohms/RTD)"

Electrical connectors (A2)

Range (Measure)	0 to ±55 mA 0 to ±30 V
Accuracy: Measure mA	0.02% of reading + 3 counts
Accuracy: Measure V	0.03% of reading + 2 counts
Temperature coefficient	
14 to 50°F, 86 to 122°F (-10 to 10°C, 30 to 50°C)	0.0017% FS / °F (0.003% FS / °C)
Switch detection	Open and closed. 2 mA current.
Loop power output	24 V ± 10% (Maximum: 35 mA)
HART [®] resistor	250 Ω
Connectors (A2)	Three 0.16 in (4 mm) sockets

Temperature ranges (RTD)

RTD type	Standard	Ra	ange	°F	Range °C			Accuracy °F *	Accuracy °C *
Pt50 (385)	IEC 751	-328	to	1 562	-200	to	850	0.90	0.50
Pt100 (385)	IEC 751	-328	to	1 562	-200	to	850	0.45	0.25
Pt200 (385)	IEC 751	-328	to	1 562	-200	to	850	1.08	0.60
Pt500 (385)	IEC 751	-328	to	1 562	-200	to	850	0.72	0.40
Pt1000 (385)	IEC 751	-328	to	752	-200	to	400	0.36	0.20
D 100 (392)	JIS 1604-1989	-328	to	1 202	-200	to	650	0.45	0.25
Ni 100	DIN 43760	-76	to	482	-60	to	250	0.36	0.20
Ni 120	MINCO 7-120	-112	to	500	-80	to	260	0.36	0.20
*Temperature coefficient:									
14 to 50°F, 86 to 122°F	= 0.0028% FS / °F								
(-10 to 10°C, 30 to 50°C	= 0.005% FS / °C)								

Resistance ranges (Ohms/RTD)

Range (Ω)			Excitation (mA)	Accu	racy (Ω)*	
				Measure	Supply	
0	to	400	0.10 to 0.5	-	0.15	
0	to	400	0.50 to 3.0	0.10	0.10	
400	to	1 500	0.10 to 0.8	0.50	0.50	
1 500	to	3 200	0.05 to 0.4	1.00	1.00	
3 200	to	4 000	0.05 to 0.3	1.30	1.30	
*Temperature coefficient:						
14 to 50°F, 86 to 122°F = 0.0028% FS / °F						
(-10 to 10°C, 30 to 50°C = 0.005% FS / °C)						

Frequency

cpm = counts/minute, cph = counts/hour

Range (Measure):	Accuracy:					
0 to 999.999 Hz 0 to 50.0000 kHz cpm: 0 to 999 999 cph: 0 to 999 999	For all the ranges: 0.003% of reading + 2 counts					
ppm = pulses/minute, pph = pulses/hour						
Range (Supply):	Accuracy:					
0 to 999.99 Hz 0 to 50.000 kHz ppm: 0 to 59 999 pph: 0 to 99 999	0.003% of reading + 0.0023 Hz 0.003% of reading + 0.0336 Hz 0.003% of reading + 0.138 cpm 0.003% of reading + 0.5 cph					

Temperature coefficient	
14 to 50°F, 86 to 122°F (-10 to 10°C, 30 to 50°C)	0.0017% FS / °F (0.003% FS / °C)
Output waveform	FH Square, bipolar
Voltage input	0 to 30 V
Trigger level	0 to 12 V, Resolution: 0.1 V
Output amplitude	0.1 to 12 V dc \pm 1% (\leq 10 mA)
	0.1 to 12 V aca ± 5% (≤ 10 mA)

a Peak to Peak

Temperature ranges (TC)

Thermocouple type	Standard	Range °	F		Range °	С		Accuracy °F *	Accuracy °C *
К	IEC 584	-454	to	-328	-270	to	-200	3.6	2.0
K	IEC 584	-328	to	2 502	-200	to	1 372	1.1	0.6
J	IEC 584	-346	to	2 192	-210	to	1 200	0.9	0.5
Т	IEC 584	-454	to	-292	-270	to	-180	2.5	1.4
Т	IEC 584	-292	to	-94	-180	to	-70	0.9	0.5
Т	IEC 584	-94	to	752	-70	to	400	0.6	0.3
В	IEC 584	32	to	932	0	to	500	7.2	4.0
В	IEC 584	932	to	2 192	500	to	1 200	3.6	2.0
В	IEC 584	2 192	to	3 308	1 200	to	1 820	1.8	1.0
R	IEC 584	-58	to	32	-50	to	0	5.4	3.0
R	IEC 584	32	to	572	0	to	300	3.6	2.0
R	IEC 584	572	to	3 214	300	to	1 768	1.8	1.0
S	IEC 584	-58	to	32	-50	to	0	4.5	2.5
S	IEC 584	32	to	212	0	to	100	3.4	1.9
S	IEC 584	212	to	3 214	100	to	1 768	2.5	1.4
E	IEC 584	-454	to	-238	-270	to	-150	1.6	0.9
E	IEC 584	-238	to	1 796	-150	to	980	0.7	0.4
Ν	IEC 584	-454	to	-4	-270	to	-20	1.8	1.0
Ν	IEC 584	-4	to	2 372	-20	to	1 300	1.1	0.6
L	DIN 43710	-328	to	1 652	-200	to	900	0.6	0.3
U	DIN 43710	-328	to	212	-200	to	100	0.9	0.5
U	DIN 43710	212	to	1 112	100	to	600	0.6	0.3
С		32	to	2 732	0	to	1 500	1.8	1.0
С		2 732	to	3 632	1 500	to	2 000	2.5	1.4
С		3 632	to	4 199	2 000	to	2 315	3.4	1.9
D		32	to	3 092	0	to	1 700	1.8	1.0
D		3 092	to	3 992	1 700	to	2 200	2.9	1.6
D		3 992	to	4 514	2 200	to	2 490	6.5	3.6
XA (K) **		-454	to	2 502	-270	to	1 372	-	0.6 ***
ЖК (Ј) **		-346	to	2 192	-210	to	1 200	-	0.5 ***
MK (T) **		-454	to	752	-270	to	400	-	0.3 ***
ПР (В) **		32	to	3 308	0	to	1 820	-	1.0 ***
ПП (S) **		-58	to	3 214	-50	to	1 768	-	1.4 ***
XK (E) **		-454	to	1 796	-270	to	980	-	0.4 ***
BP-1 **	FOCT 50431-92	32	to	4 532	0	to	2 500	-	2.5 ***
XK(r) / XK(pyc) **	FOCT 50431	-328	to	1 472	-200	to	800	-	0.25 ***

* Mid-point value for the specified range. To calculate the actual error at a specified temperature, use the mV (TC) specification. ** Only available with Russian versions of the DPI 880. *** Best accuracy for the range.

Cold Junction (CJ) error (Maximum):

Range 50° to 86°F (10 to 30°C) = 0.4°F (0.2°C)

Add 0.01° CJ error / ° ambient temperature change for ranges: 14 to 50°F, 86 to 122°F (-10 to 10°C, 30 to 50°C)

mV (TC) range

Range (mV)	Impedance	Accuracy (Measure/Supply)				
-10 to 75	< 0.2 Ω	0.02% of reading + 0.01% FS				

Office Locations

Headquarters

Leicester, UK +44 (0) 116 2317233 □ gb.sensing.sales@bakerhughes.com

China

Guangzhou S +86 173 1081 7703 ☑ dehou.zhang@bakerhughes.com

Germany

Frankfurt S +49 (0) 69-22222-973 □ sensing.de.cc@bakerhughes.com

Japan

Tokyo S +81 3 6890 4538 ☐ gesitj@bakerhughes.com

UAE

Abu Dhabi \$\lambda +971 528007351 Suhel.aboobacker@bakerhughes.com

Tech Support

Global □ drucktechsupport@bakerhughes.com

France

Toulouse S +33 562 888 250 Image: Sensing.FR.cc@bakerhughes.com

UAE

Abu Dhabi S +971 2 4079381 □ gulfservices@bakerhughes.com

Australia

North Sydney © 1300 171 502 □ custcare.au@bakerhughes.com

China

Shanghai Section 5 + 86 135 6492 6586 □ hensen.zhang@bakerhughes.com

India

Bangalore S +91 9986024426 □ aneesh.madhav@bakerhughes.com

Netherlands

Hoevelaken S +31 334678950 ☐ nl.sensing.sales@bakerhughes.com

USA

Boston & 1-800-833-9438 □ custcareboston@bakerhughes.com

Services and Support Locations

Brazil

Campinas & +55 19 2104 6924, +55 19 97169 1190 □ cc.sensing.brasil@bakerhughes.com

India

Pune S +91-2135-620421~425 mcindia.inhouseservice@bakerhughes.com

UK

Leicester S +44 (0) 116 2317107 □ sensing.grobycc@bakerhughes.com

China

Beijing S +86 180 1929 3751 ☑ fan.kai@bakerhughes.com

France

Toulouse S +33 562 888 250 □ sensing.FR.cc@bakerhughes.com

Italy

Milan S +39 02 36 04 28 42 □ csd.italia@bakerhughes.com

Russia

Moscow & +7 915 3161487 □ aleksey.khamov@bakerhughes.com

China

Changzhou Section 400 818 1099 □ service.mcchina@bakerhughes.com

Japan

Tokyo © +81 3 6894 1838 Service.druck.jp@bakerhughes.com

USA

Billerica & +1 (281) 542-3650 ☑ namservice@bakerhughes.com

bakerhughes.com